Vikas Bharati Public School
 Sample Paper (Session 2023-24)

Class: XI
Subject: Mathematics (041)
Time: $\mathbf{3}$ hrs.
M.M: 80

General Instructions:

- This question paper contains 5 sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- Section A has 18 M.C. Q's and 2 Assertion- Reason based questions of 1 mark each.
- Section B has 5 very short answers type questions of 2 marks each.
- Section C has 6 short answer type questions of $\mathbf{3}$ marks each.
- Section D has 4 long answer type questions of 5 marks each.
- Section \mathbf{E} has $\mathbf{3}$ case-based questions of $\mathbf{4}$ marks each with subparts
- This question paper contains 4 printed pages

$\begin{gathered} \hline \mathbf{Q} \\ \text { No } \end{gathered}$	SECTION A	Mark s
1.	Which of the following is a null set? (a) Integers in set $[2,3]$ (b) Integers in set $\{2,3\}$ (c) Integers in set $(2,3]$ (d) Integers in set $(2,3)$	1
2.	Value(s) of $\theta, \theta \in(0,2 \pi)$ for which the complex number $\frac{1+i \cos \theta}{1-2 i \cos \theta}$ is purely real, is (a) $\frac{\pi}{4}, \frac{7 \pi}{4}$ (b) $\frac{\pi}{2}, \frac{3 \pi}{2}$ (c) $\frac{\pi}{2}$ only (d) π only	1
3.	For a G.P., if $\mathrm{a}=729$ and $7^{\text {th }}$ term is 64 , then its common ratio is equal to : (a) $\frac{3}{2}$ (b) $\frac{2}{3}$ (c) $\frac{-2}{3}$ (d) $\pm \frac{2}{3}$	1
4.	Length of the latus rectum of the parabola with focus at $(3,0)$ is (a) 3 (b) 12 (c) -12 (d) none of these	1
5.	Let $A=\{1,2\}, B=\{3,4\}$. Then the number of relations from A to B are (a) 4 (b) 8 (c) 16 (d) 32	1
6.	The number of 5 digit telephone numbers having atleast one of their digits repeated is: (a) 90000 (b) 100000 (c) 30240 (d) 69760	1
7.	If $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{3,5,6,7\}$ and $\mathrm{C}=\{3,5,8\}$, then $(\mathrm{A} \cap B)-(B \cap C)=$ $\{1,2\}$ (b) $\{1\}$ (c) $\{2\}$ (d) \varnothing	1
8.	The equation of the line passing through (1,5) and perpendicular to the line $3 x 5 y+7=0$ is : (a) $5 x+3 y 2=0$ (b) $3 x 5 y+7=0$ (c) $3 x-5 y+6=0$ (d) $5 x+3 y+7=0$	1
9.	In a non leap year, probability of having 53 Tuesdays is: (a) $\frac{1}{5}$ (b) $\frac{4}{5}$ (c) $\frac{1}{7}$ (d) $\frac{5}{9}$	1

10.	$\mathrm{A}=\{1,3,5, B\}$ and $\mathrm{B}=\{2,4\}$, then (a) $4 \epsilon \mathrm{~A}$ (b) $\{4\} \subset \mathrm{A}$ (c) $\mathrm{B} \subset \mathrm{A}$ (d) none of these	1
11.	The value of $1+i+i^{2}+\cdots+i^{n}$ is : (a) positive (b) negative (c) 0 (d) cannot be determined.	1
12.	If $(x+1, y-2)=(3,1)$, then the values of x and y are: (a) $x=-2, y=-3$ (c) $x=2, y=-3$ (b) $x=-2, y=3$ (d) $x=2, y=3$	1
13.	$\tan \left(\frac{-17 \pi}{6}\right)$ equals to (a) $\frac{-1}{\sqrt{3}}$ (b) $\frac{1}{\sqrt{3}}$ (c) $\sqrt{3}$ (d) $-\sqrt{3}$	1
14.	If $x+i y=(1+i)(1+2 i)(1+3 i)$, then $x^{2}+y^{2}=$ (a) 0 (b) 1 (c) 100 (d) 5	1
15.	If $\tan \theta=3$ and θ lies in third quadrant, then the value of $\sin \theta$ is : (a) $\frac{1}{\sqrt{10}}$ (b) $-\frac{1}{\sqrt{10}}$ (c) $\frac{3}{\sqrt{10}}$ (d) $\frac{-3}{\sqrt{10}}$	1
16.	Coordinates of the centre of given circle $x^{2}+y^{2}-8 x+10 y-12=0$ are (a) $(-4,5)$ (b) $(4,-5)$ (c) $(4,5)$ (d) none of these	1
17.	The degree measure of $\frac{11}{16}$ radian is (a) $39^{0} 22^{\prime} 30^{\prime \prime}$ (b) $39^{0} 22.3^{\prime}$ (c) $39^{\circ} 30^{\prime} 22^{\prime \prime}$ (d) 39^{0}	1
18.	The value of $\frac{\tan 50^{\circ}}{\tan 230^{\circ}}$ is (a) 1 (b) 0 (c) -1 (d) can not be determined	1
19.	Assertion (A) : An angle of $\frac{11}{7}$ is equivalent to 90^{0} Reason $(\mathrm{R}):$ Angle in radian $=$ Angle in degree $\mathrm{x} \frac{\pi}{180^{0}}$ (a) Both A and R are true and R is the correct explanation for A . (b) Both A and R are true and R is not the correct explanation for A . (c) A is true but R is false. (d) A is false but R is true.	1
20.	Assertion (A) : If $\cos x=-\frac{1}{3}$, then $\sin \frac{x}{2}=\frac{1}{\sqrt{3}}$, when $x \in$ II Quadrant Reason (R) : $\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}$ (a) Both A and R are true and R is the correct explanation for A. (b) Both A and R are true and R is not the correct explanation for A. (c) A is true but R is false (d) A is false but R is true.	1
	Section B	
21.	The perpendicular from the origin to the line $y=m x+c$ meets it at the point $(-1,2)$. Find the value of m and c.	2
	OR	
	Find the equation of line passing through (1,2) and making angle 30° with y axis.	
22.	Find the domain and range of the function defined by $f(x)=\sqrt{(x-1)}$	2

23.	In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that (1) The student opted for NCC or NSS (2) The student has opted neither NCC nor NSS	2
24.	Find the value of $\cos \left(\frac{3 \pi}{2}-\theta\right) \cos (2 \pi+\theta)\left[\cot \left(\frac{3 \pi}{2}-\theta\right)+\cot (2 \pi+\theta)\right]$	2
25.	Using Binomial theorem, find the value of 51^{4}.	2
	Section C	
26.	Determine the value of k for which $\lim _{x \rightarrow 3} f(x)=f(3)$ where $f(x)=\left\{\begin{array}{cc}\frac{(x+3)^{2}-36}{x-3}, & x \neq 3 \\ k, & x=3\end{array}\right.$	3
27.	If the line $y=\sqrt{3} x+k$ touches the circle $x^{2}+y^{2}=16$, then find the value of k.	3
	OR	
	Find the equation of the circle having (1,-2) as its centre and passing through the intersection of the lines $3 x+y=14$ and $2 x+5 y=18$.	
28.	A straight line passes through the point $P(1,2)$ and the portion of the line intercepted between the axes is bisected at this point, find its equation.	3
29.	Prove that $\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$	3
30.	(1) How many different words can be formed with the letters of the word HARYANA? (2) How many of these begin with H and end with N ? (3) In how many of these H and N are together ?	3
	OR	
	How many words, with or without meaning, each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?	
31.	Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that (a) you both enter the same section ? (b) you both enter the different sections ?	3
	Section D	
32.	(1) Differentiate the following function with respect to x, using first principle: $f(x)=\sin ^{2} x$ (2) Find the derivative of: (a) $(x+\cos x)(x-\tan x)$ and (b) $\frac{\left(3 x^{2}-5 x+2\right)}{7 x-1}$ with respect to x.	$3+2$
33.	The mean of 5 observations is 4.4 and their variance is 8.24 . If three of the observations are 1,2 and 6 , find the other two observations.	5
	OR	
	Find the mean , variance and standard deviation of the following data :	

	(ii)	$\lim _{x \rightarrow 1} \frac{(x-1)^{2}+3 x^{2}}{\left(x^{4}+1\right)^{2}}$	
	(iii) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x^{3}}-\sqrt{1-x^{3}}}{x^{2}}$	$\mathbf{2}$	

